The function metafixed performs fixed-effects multivariate meta-analysis with the generalized least squares (GLS) method.

metafixed(y, Slist)

Arguments

y

A \(N \times p\) matrix or data frame that stores effect sizes from \(N\) primary studies. Usually the output value ef produced by r.vcov for correlation coefficients or mix.vcov for other types of effect sizes.

Slist

A \(N\)-dimensional list of \(p(p+1)/2 \times p(p+1)/2\) matrices that stores within-study (co)variance matrices of the estimated effect sizes for each one of the \(N\) studies. Usually the output value list.vcov produced by r.vcov for correlation coefficients or mix.vcov for other types of effect sizes.

Author

Min Lu

Details

Estimators were calculated from the generalized least squares approach.

Value

The metafixed function typically returns a list object of class "metafixed" representing the meta-analytical model. Use the summary function to check the analysis results.

References

Ahn, S., Lu, M., Lefevor, G.T., Fedewa, A. & Celimli, S. (2016). Application of meta-analysis in sport and exercise science. In N. Ntoumanis, & N. Myers (Eds.), An Introduction to Intermediate and Advanced Statistical Analyses for Sport and Exercise Scientists (pp.233-253). Hoboken, NJ: John Wiley and Sons, Ltd.

Cooper, H., Hedges, L.V., & Valentine, J.C. (Eds.) (2009). The handbook of research synthesis and meta-analysis. New York: Russell Sage Foundation.

Examples

###################################################### # Example: Craft2003 data # Preparing covariances for multivariate meta-analysis ###################################################### data(Craft2003) computvcov <- r.vcov(n = Craft2003$N, corflat = subset(Craft2003, select = C1:C6), method = "average") y <- computvcov$ef Slist <- computvcov$list.vcov ##################################################### # Running fixed-effects model using "metafixed" ##################################################### MMA_FE <- summary(metafixed(y = y, Slist = Slist)) MMA_FE$coefficients
#> Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub #> C1 0.61556515 0.03136377 19.626629 0.000000e+00 0.55409328 0.67703702 #> C2 -0.26790534 0.03135300 -8.544807 0.000000e+00 -0.32935610 -0.20645459 #> C3 -0.34029017 0.03135425 -10.853078 0.000000e+00 -0.40174337 -0.27883696 #> C4 -0.07679820 0.03135464 -2.449341 1.431179e-02 -0.13825217 -0.01534424 #> C5 -0.04722136 0.03135158 -1.506188 1.320190e-01 -0.10866933 0.01422661 #> C6 0.14959218 0.03136549 4.769324 1.848453e-06 0.08811695 0.21106741
############################################################## # Plotting the result: ############################################################## plotCI(y = computvcov$ef, v = computvcov$list.vcov, name.y = NULL, name.study = Craft2003$ID, y.all = MMA_FE$coefficients[,1], y.all.se = MMA_FE$coefficients[,2], up.bound = Inf, low.bound = -Inf)
#> $`Plotting C1`
#> #> $`Plotting C2`
#> #> $`Plotting C3`
#> #> $`Plotting C4`
#> #> $`Plotting C5`
#> #> $`Plotting C6`
#>